A Geometric Variational Approach to Bayesian Inference
نویسندگان
چکیده
منابع مشابه
Bayesian approach to inference of population structure
Methods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of p...
متن کاملThe variational Laplace approach to approximate Bayesian inference
Variational approaches to approximate Bayesian inference provide very efficient means of performing parameter estimation and model selection. Among these, so-called variational-Laplace or VL schemes rely on Gaussian approximations to posterior densities on model parameters. In this note, we review the main variants of VL approaches, that follow from considering nonlinear models of continuous an...
متن کاملVariational Bayesian Inference Note
When we use EM that uses maximum likelihood as a criterion to select the number of Gaussians, we face the problem of that as the complexity of model increases, the training likihood strictly improves, which means the larger number of Gaussians, the better fit of the training data (see Figure 1). We can see from this example, the traning log-likelihood can even become positive when some clusters...
متن کاملA Bayesian Approach to Geometric
| This paper presents a geometric approach to estimating subspaces as elements of complex Grassmann-manifold, with each subspace represented by its unique, complex projection matrix. Variation between the sub-spaces is modeled by rotating their projection matrices via the action of unitary matrices (elements of the unitary group (U(n))). Subspace estimation or tracking then corresponds to the i...
متن کاملA Filtering Approach to Stochastic Variational Inference
Stochastic variational inference (SVI) uses stochastic optimization to scale up Bayesian computation to massive data. We present an alternative perspective on SVI as approximate parallel coordinate ascent. SVI trades-off bias and variance to step close to the unknown true coordinate optimum given by batch variational Bayes (VB). We define a model to automate this process. The model infers the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2019
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2019.1585253